
Image Encryption Using Binary Key-images

Yicong Zhou, Karen Panetta, Fellow, IEEE
Department of Electrical and Computer Engineering

Tufts University
Medford, MA 02155, USA

yzhou0a@ece.tufts.edu, karen@ece.tufts.edu

Sos Agaian, Senior Member, IEEE
Department of Electrical and Computer Engineering

University of Texas at San Antonio
San Antonio, TX 78249, USA

Sos.Agaian@utsa.edu

Abstract—This paper introduces a new concept for image
encryption using a binary “key-image”. The key-image is either a
bit plane or an edge map generated from another image, which
has the same size as the original image to be encrypted. In
addition, we introduce two new lossless image encryption
algorithms using this key-image technique. The performance of
these algorithms is discussed against common attacks such as the
brute force attack, ciphertext attacks and plaintext attacks. The
analysis and experimental results show that the proposed
algorithms can fully encrypt all types of images. This makes them
suitable for securing multimedia applications and shows they
have the potential to be used to secure communications in a
variety of wired/wireless scenarios and real-time application such
as mobile phone services.

Keywords—image encryption, key-image, bit plane, edge map,
brute force attack, chipertext attack, plaintext attack

I. INTRODUCTION

Network technologies and media services provide
ubiquitous conveniences for individuals and organizations to
collect, share, or distribute images/videos in multimedia
networks and wireless or mobile public channels. Image
security is a major challenge in storage and transmission
applications. For example, video surveillance systems for
homeland security purposes are used to monitor many strategic
places such as public transportation, commercial and financial
centers. Large amounts of videos and images with private
information are generated, transmitted, or restored every day.
In addition, medical images with a patient’s records may be
shared among the doctors in different branches of a health
service organization over networks for different clinical
purposes. These images and videos may contain private
information. Providing security for these images and videos
becomes an important issue for individuals, business and
governments as well. Moreover, applications in the automobile,
medical, construction and fashion industry require designs,
scanned data, and blue-prints to be protected against espionage.
Considering the long lifetime of image in the afore-mentioned
domains, it is imperative to develop and employ techniques
which protect the content throughout their lifetime [1]. Image
encryption is an effective approach to protect images or videos
by transforming them into completely different formats.

Several interesting approaches for image encryption have
been developed. One method based on the cryptography
concept considers images as data blocks or streams. It encrypts
images block by block or stream by stream using different

techniques. Data Encryption Standard (DES) [2] and Advanced
Encryption Standard (AES) [3] are two examples of this
approach. However, such encryption methods incur large
computational costs and show poor error resilience [4].

Image encryption can be accomplished by scrambling
image pixel positions using different techniques in the spatial
domain [5-7]. One example is the recursive sequence based
image scrambling approach. It scrambles images using
different recursive sequences such as the Fibonacci sequence
[8], Cellular automata [9] and chaotic maps [10, 11]. Image
encryption can also be accomplished by scrambling coefficient
matrices/blocks in the transform domain [12, 13]. Nevertheless,
these approaches have extremely low security levels due to the
lack of security keys or the small key space. Furthermore, the
permutation-only based encryption schemes are known to be
vulnerable for plaintext attacks [14].

Another approach for image encryption is to change image
pixel values based on the combination of image bit plane
decomposition and logic operations [15, 16]. The security level
of this method is much lower because the results of its
decomposition process and logic operations are predictable. It
is not immune to plaintext attacks.

To achieve higher levels of security, one solution is to
change image pixel values while scrambling the positions of
image pixels or blocks using different techniques. In this paper,
we introduce two new lossless image encryption algorithms
using a new concept “key-image” which is a binary image with
the same size as the original image to be encrypted. One
algorithm, called the BitplaneCrypt, generates the key-image
by extracting a binary bit plane from another new or existing
image. The key image of the other algorithm, called
EdgemapCrypt, is an edge map obtained from a new or existing
image using a specific edge detector with a specified threshold.

The algorithms decompose the original image into its
binary bit planes. The bit planes are encrypted by performing
an XOR operation with the key-image one by one. And then
the order of all the bit planes is inverted. The resulting
encrypted image can be obtained by applying a scrambling
algorithm to the image from a combination of all bit planes.

The rest of this paper is organized as followed. Section II
introduces the two image encryption algorithms. Experimental
examples are provided in Section III to show the performance
of the two algorithms for 2D and 3D image encryption. Section

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
4569

IV addresses the cryptanalysis for the two algorithms. A
conclusion is reached in Section V.

II. IMAGE ENCRYPTION ALGORITHMS

In this section, A binary image is introduced as a “key-
image” with the same size as the original image to be
encrypted. We also introduce two image encryption algorithms
using this key-image. One is called the BitplaneCrypt
algorithm, while the other is named as the EdgemapCrypt
algorithm. Both of them can fully encrypt 2D and 3D images
such as grayscale images, color images and medical images.

The underlying foundation of both algorithms is to change
image pixel values by performing the XOR operation between
the key-image and each bit plane of the original image. This is
followed by an image scrambling process which changes the
locations of image pixels or blocks.

A. The BitplaneCrypt algorithm
The BitplaneCrypt algorithm uses a binary bit plane as the

key-image. This bit plane is extracted from another new or
existing image which is different from the original image to be
encrypted.

The BitplaneCrypt algorithm is described in Fig. 1. It first
generates the key-image by exacting the rth bit plane of the
selected image, where r is the location of the bit plane. The
algorithm then decomposes the original image into its binary
bit planes and performs an XOR operation between each of
these bit planes and the key-image. Next, the order of bit planes
is inverted. The algorithm combines the bit planes together.
Finally, a select scrambling algorithm is applied to the image to
obtain the final resulting encrypted image.

Figure 1. The BitplaneCrypt algorithm

Since the 3D image contains several 2D data matrices
called 2D components, the 3D image encryption can be
accomplished by encrypting all its 2D components one by one.

The users have flexibility to choose any new or existing
image to generate the key-image. This image can be a public
image or an image created by the users themselves. The key-
image can be selected from one of bit planes of this image. Any
new or existing image scrambling method can be used in the
BitplaneCrypt algorithm. Therefore, the security keys of the
algorithm consist of the image or the location of the image used
to generate the key-image, the location of the bit plane chosen
as the key-image and the security keys of the scrambling
method if applicable.

The correct security keys should be provided to the
authorized user to generate the key-image. In the decryption
process, the user unscrambles the encrypted image using the
corresponding scrambling algorithm and its security keys. It
then decomposes the image into bit planes. Each bit plane is
applied an XOR operation with the key-image. The order of bit
planes is reverted to the original order. The original image can
be reconstructed by combining all bit planes.

Similar to the encryption process, the original 3D image can
be reconstructed by decoding its 2D components one by one.

B. The EdgemapCrypt algorithm
The edge map is frequently used in image enhancement,

compression, segmentation and recognition. The application of
edge maps can also be extended to image encryption. In this
section, we introduce a new image encryption algorithm using
an edge map which is called the EdgemapCrypt algorithm.

An edge map is considered as the key-image in this
algorithm. Such edge map is generated from another different
image with the same size as the original image using a specific
edge detector with a selected threshold value.

Bit
Planes

XOR-ed
Bit

Planes

new/existing
image Edge detector Edge map

Threshold
value

Invert the
order of all
bit planes

Scrambling
algorithm

Combine
bit planes

Original
image

Encrypted
image

Figure 2. The EdgemapCrypt algorithm

The EdgemapCrypt algorithm first decomposes the original
image into its binary bit planes. Each of them is encrypted by
performing an XOR operation with the key-image, which is an
edge map created from another image. Next, the algorithm
inverts the order of all XORed bit planes and combines them
together. The resulting image is scrambled by using a selected

Algorithm-1 The BitplaneCrypt Algorithm

Input The original 2D or 3D image to be encrypted
Step 1 Choose a new or existing image with the same size of

the original image, (convert the image into 2D image if
it is a 3D image.)

Step 2 Obtain the key-image by extract the rth bit plane of the
image in Step 1.

Step 3 Decompose the original image or each component of
the 3D image into its binary bit planes

Step 4 Perform the XOR operation between the key-image and
each bit plane in Step 3.

Step 5 Invert the order of all bit planes
Step 6 Combine all bit planes together to obtain the 2D image

or components
Step 7 Scramble the resulting image or components in Step 6

using a selected scrambling method to generate the
resulting encrypted image. (For the 3D image, scramble
its 2D components one by one.)

Output The encrypted 2D or 3D image

4570

scrambling algorithm to generate the final resulting encrypted
image. The EdgemapCrypt algorithm is illustrated in Fig. 2.

Similar to the BitplaneCrypt algorithm, a 3D image can be
encrypted by applying the EdgemapCrypt algorithm to all its
2D components individually.

Any new or existing image with the same size of the
original image can be used to generate the edge map, the key-
image. It could be an image in the public online database or a
new image generate by the users. The edge map can be
obtained by using any existing edge detector such as Canny,
Sobel, Prewitt, or any other edge detector. The users have
flexibility to choose any existing image or any existing edge
detector or any threshold value to generate the edge map used
as a key-image. They also have flexibility to use any existing
image scrambling method for the EdgemapCrypt algorithm.
Therefore, the security keys for this algorithm consist of the
image or its location which is used to generate the edge map,
the type of the edge detector, the edge detector’s threshold, and
the security keys of the scrambling algorithm.

To reconstruct the original image, the users should be
provided the security keys which help them to obtain the
correct edge map. The decryption process first generates the
edge map from the selected image using the security keys. It
then unscrambles the encrypted image using the selected
scrambling algorithm. Next, it decomposes the unscrambled
image into its binary bit planes and performs XOR operation
between the edge map and each bit plane. The order of all bit
planes is restored to the original order. The reconstructed 2D
image/component can be obtained by combining all bit planes.

III. EXPERIMENTAL RESULTS

The BitplaneCrypt and EdgemapCrypt algorithms have
been successfully implemented in 18 different 2D and 3D
images such as grayscale images, color images and medical
images. Several simulation results are provided to show the
performance of the algorithms for 2D and 3D image
encryption.

Figure 3. Test images. (a) 256×256 Cameraman; (b) 256×256 Lena; (c)
256×256 Baby; (d) 256×256 Chessplayer; (e) 512×512 Barbara; (f) 512×512

Peppers; (g) 512×512 CT ribs image; (h) 512×512 MRI brain image

In all experimental results of this paper, both algorithms
utilize the image scrambling algorithm based on the
Generalized P-Gray Code in [17] with the security keys:

2, 0n p . Fig. 3 shows several 2D images to be used as test
images or images to generate the key-image.

A. 2D Image Encryption
There are several types of 2D images such as grayscale

images, medical images and biometrics. The 2D image can be
decomposed into several binary bit planes and encrypted one
by one.

Figure 4. Grayscale image encryption using the BitplaneCrypt algorithm.
(a) The original 512×512 grayscale image; (b) A 512×512 Peppers image;

(c) The encrypted image; (d) The reconstructed image; (e) Histogram of the
original image in (a); (f) The 5th bit plane of the Peppers image in (b);

(g) Histogram of the encrypted image in (c); (h) Histogram of the difference
between (d) and (a).

Figure 5. Grayscale image encryption using the EdgemapCrypt algorithm.
(a) The original 256×256 grayscale image; (b) A 256×256 Cameraman image;

(c) The encrypted image; (d) The reconstructed image; (e) Histogram of the
original image in (a); (f) The edge map of the Cameraman image in (b),

Sobel, 0.3; (g) Histogram of the encrypted image in (c); (h) Histogram of the
difference between (d) and (a).

Fig. 4 shows an example of grayscale image encryption
using the BitplaneCrypt algorithm. The key-image in this
example is the 5th bit plane of a 512×512 grayscale Peppers
image. Fig. 5 shows a result of grayscale image encryption
using the EdgemapCrypt algorithm. The key-image is obtained
from a 256×256 grayscale Cameraman image using the Sobel
edge detector with a threshold 0.3.

From these results, the original images are fully encrypted
as shown in Fig. 4(c) and Fig. 5(c). The distributions of the
pixel values of the encrypted images are almost equal in
grayscale value range as shown in Fig. 4 (g) and Fig. 5(g).
This is one advantage of the presented algorithms. The original
images are completely reconstructed. These can be verified by
the reconstructed images in Fig. 4(d) and Fig. 5(d) and their
histogram of the difference between the original image and the
reconstructed image in Fig. 4(h) and Fig. 5(h).

The medical image encryption examples using the
BitplaneCrypt and EdgemapCrypt algorithms are shown in Fig.
6 and Fig. 7, respectively. The key-image of the BitplaneCrypt
algorithm in Fig. 6 is the 7th bit plane of a 512×512 grayscale

4571

Barbara image. The key-image of the EdgemapCrypt algorithm
in Fig. 7 is generated from a 512×512 grayscale Peppers image
using a Prewitt edge detector with a threshold 0.2. The original
medical images are also fully encrypted and completely
reconstructed. This full encryption can be demonstrated by the
encrypted image in Fig. 6(c) and Fig. 7 (c) and their histograms
in Fig. 6(g) and Fig. 7(g), individually. The perfect
reconstruction can be verified by the reconstructed images in
Fig. 6(d) and Fig. 7(d) and their histograms in Fig. 6(h) and
Fig. 7(h), respectively. All these results prove that the
presented algorithms are lossless encryption methods.

Figure 6. Medical image encryption using the BitplaneCrypt algorithm.
(a) The original 512×512 CT ribs image; (b) A 512×512 Barbara image;

(c) The encrypted image; (d) The reconstructed image; (e) Histogram of the
original image in (a); (f) The 7th bit plane of the Barbara image in (b);

(g) Histogram of the encrypted image in (c); (h) Histogram of the
reconstructed image in (d).

Figure 7. Medical image encryption using the EdgemapCrypt algorithm.
(a) The original 512×512 MRI brain image; (b) A 512×512 Peppers image;
(c) The encrypted image; (d) The reconstructed image; (e) Histogram of the
original image in (a); (f) The edge map of the Peppers image in (b), Prewitt,

0.2; (g) Histogram of the encrypted image in (c); (h) Histogram of the
reconstructed image in (d).

B. 3D Image Encryption
The 3D images, such as color images and 3D medical images
contain several 2D components. Each component can be
considered as a 2D image. The 3D image encryption using the
presented algorithms can be accomplished by encrypting all
the 2D components one by one.

Fig. 8 and Fig. 9 show the examples of color image
encryption using the BitplaneCrypt and EdgemapCrypt
algorithms, separately. The key-image in Fig. 8 uses the 4th bit
plane of a 512×512 grayscale Chessplayer image. The key
image in Fig. 9 is an edge map generated from a 512×512
grayscale Barbara image using Canny edge detector with
threshold 0.1.

The results show that the color images are fully encrypted
and then completely reconstructed. The histograms in Fig. 8(g)
and Fig. 9(g) also verified the distributions of the encryption
images are equal in the data level range. The reconstructed
images in Fig. 8(d) and Fig. 9(d) and their histograms in Fig.
8(h) and Fig. 9(h) demonstrate the complete reconstruction of
the original images. These further prove that the BitplaneCrypt
and EdgemapCrypt algorithms are lossless encryption methods.

Figure 8. Color image encryption using the BitplaneCrypt algorithm.
(a) The original 256×256 color image; (b) A 256×256 grayscale Chessplayer

image; (c) The encrypted color image; (d) The reconstructed color image;
(e) Histogram of the original image in (a); (f) The 4th bit plane of the

Chessplayer image in (b); (g) Histogram of the encrypted image in (c);
(h) Histogram of the difference between (d) and (a).

Figure 9. Color image encryption using the EdgemapCrypt algorithm.
(a) The original 512×512 color image; (b) A 512×512 grayscale Barbara
image; (c) The encrypted color image; (d) The reconstructed color image;

(e) Histogram of the original image in (a); (f) The edge map of the Barbara
image in (b), Canny, 0.1; (g) Histogram of the encrypted image in (c);

(h) Histogram of the recontructed image in (d).

IV. SECURITY ANALYSIS

Security is important for both the encrypted objects and the
encryption algorithms. We discuss some security issues of the
BitplaneCrypt and EdgemapCrypt algorithms from the
cryptography point of view in this section.

A. Security Key Space
As the discussion in Section II, the security keys of the

BitplaneCrypt algorithm are the combination of the image or
the location of the image used to generate the key-image, the
location of the bit plane used as the key-image, the security
keys of the scrambling algorithm. On the other hand, the
security keys of the EdgemapCrypt algorithm consist of the
image or its location which is used to generate the edge map,
the type of the edge detector, the edge detector’s threshold, and
the security keys of the scrambling algorithm.

4572

The combination of the security keys is extremely
important for both presented algorithms. The original image
can be completely reconstructed without any distortion only
when the correct security keys are being utilized. This can be
verified by the reconstructed images in Fig. 10(b) and Fig.
11(b) and their histograms in Fig. 10 (f) and Fig. 11(f).
Otherwise, the reconstructed images cannot be recognized as
shown in Fig. 10 (c), (d) and Fig. 11 (c), (d).

Figure 10. Grayscale image decryption using the BitplaneCrypt algorithm
with different security keys. (a) The encrypted 256×256 grayscale Chessplayer

image with security keys: the 4th bit plane of the 256×256 grayscale Lena
image and 2, 0n p for the scrambling algorithm; (b) The reconstructed

grayscale image using the correct secruity keys; (c) The reconstructed
grayscale image using the same key-image and 2, 2n p for the scrambling
algorithm; (d) The reconstructed grayscale image using the 7th bit plane of the
256×256 grayscale Lena image and the same security keys for the scrambling
algorithm; (e) the key-image: the 4th bit plane of the 256×256 grayscale Lena

image; (f) Histogram of the difference between the original image and the
reconstructed image in (b); (g) Histogram of the difference between the
original image and the reconstructed image in (c); (h) Histogram of the

difference between the original image and the reconstructed image in (d).

Figure 11. Grayscale image decryption using the EdgemapCrypt algorithm
with different security keys. (a) The encrypted 256×256 grayscale Baby image

with security keys: the 256×256 grayscale Chessplayer image, Prewitt, 0.5,
and 2, 0n p for the scrambling algorithm; (b) The reconstructed
grayscale image using the correct secruity keys; (c) The reconstructed

grayscale image using the same key-image and 2, 1n p for the scrambling
algorithm; (d) The reconstructed grayscale image using the security keys: the

256×256 grayscale Cameramean image, Sobel, 0.3, and the same security keys
for the scrambling algorithm; (e) the key-image: the edge map of the 256×256

grayscale Chessplayer image, Prewitt, 0.5; (f) Histogram of the difference
between the original image and the reconstructed image in (b); (g) Histogram
of the difference between the original image and the reconstructed image in

(c); (h) Histogram of the difference between the original image and the
reconstructed image in (d).

Any new or existing image with the same size as the
original image can be used to generate the key-image for both
algorithms. It has a huge numbers of possible choices,
assuming IP . Each of its bit planes can be used as a key-image

for the BitplaneCrypt algorithm. The number of possible
choices of the key-image for this algorithm is 8 IP for its gray
levels within 0-255. In addition, any new or existing image
scrambling algorithm can be used to scramble the bit planes in
both algorithms. The security keys of the selected image
scrambling algorithm are also part of combinations of the
security keys for the presented algorithms, assuming their
possible choices are SP which is not more than ! !M N if the
original image is an M N grayscale image. Thus, the security
key space of the BitplaneCrypt algorithm for an M N
grayscale image with is 8 I SP P .

Moreover, any new or existing edge detector can be used in
the EdgemapCrypt algorithm, assuming its possible choice
is EP . The edge detector’s threshold is rational number within 0
to 1. However, not all the threshold values can achieve a
desirable encryption result. The number of their possible
choices may not be infinite, assuming THP . The security key
space for the EdgemapCrypt algorithm is I E TH SP P P P .

B. Brute Force Attack
The Brute force attack is an attack model in which the

attacker tries to guess the security keys by conducting an
exhaustive search of all the possible combinations of security
keys of the encryption algorithms. Theoretically, this approach
is feasible if the key space of the encryption algorithm is
limited and the attacker knows the encryption algorithm.

Even if the security key spaces of both algorithms are not
infinite, they are still sufficiently large since the large number
of possible new/existing images can be used to generate the
key-image. As a result, the two algorithms can withstand the
brute force attack.

C. Ciphertext-only Attack
In cryptography, the plaintext is the original information to

be encrypted. The ciphertext is the encrypted plaintext.

The ciphertext-only attack is an attack model in which an
attacker tries to deduce the security keys by only studying the
ciphertext [18]. This attack can be used to recover the original
image data by studying the encrypted images. If fewer portions
of the images are encrypted, more portions of the original
images can be recovered by an attacker without knowing the
encryption algorithm and its security keys. An encryption
scheme has an extremely low security level if it cannot
withstand this attack.

From the experimental results in Section III, the encrypted
images are visually unrecognizable and totally different from
the original images. They contain almost no visual information
of the original images. The distributions of the encrypted
images are equal in their histograms. These ensure the
BitplaneCrypt and EdgemapCrypt algorithms can withstand the
cipher-only attack.

D. Known-Plaintext Attack
The known-plaintext attack is an attack model in which an

attacker tries to obtain the security keys of encryption
algorithm by studying a number of plaintexts and the
corresponding ciphertexts [18]. The condition of this attack is

4573

that the attacker should have some plaintexts and the
corresponding ciphertext. It is possible for the attacker to
partially or completely break the encrypted image without
knowing the encryption algorithm and its security keys if the
encryption process does not change the image data.

The XOR operation and inverting the order of the bit planes
in the BitplaneCrypt and EdgemapCrypt algorithms are
designed to change image data. The image scrambling
algorithm is used to change image pixel positions. These make
the encrypted image data are not useful for the attacker using
this type of attack. Thus, both algorithms can withstand the
known-plaintext attack.

E. Chosen-Ciphertext Attack
The chosen-ciphertext attack is an attack model in which

the attacker can choose some ciphertexts and their
corresponding plaintexts [18]. Therefore, the attacker can
deduce the security keys in encryption algorithms, or recover
the original plaintext from the unseen ciphertext. The attack
could also be accomplished without knowing the encryption
algorithm and its security keys if the image data does not
change during the encryption process.

From the analysis above, the presented algorithms can also
withstand the chosen-ciphertext attack because both image data
and pixel locations are changed during the encryption process.

F. Chosen-Plaintext Attack
The chosen-plaintext attack is an attack model in which the

attacker can choose a number of plaintexts and then deduce
their corresponding ciphertexts [18]. As a result, the attacker
can choose any useful information as plaintext in order to
deduce the security keys of encryption algorithms, or
reconstruct the original plaintexts from the unknown
ciphertexts. The attack can break the encrypted image without
knowing the encryption algorithm and its security keys, if the
image data does not change during the encryption process.

Both the BitplaneCrypt and EdgemapCrypt algorithms
change the image data and pixel locations. They can withstand
the chosen-plaintext attack.

V. CONCLUSION

In this paper, we have introduced a new concept for image
encryption using a binary key-image. We also introduced two
image encryption algorithms based on this key-image. The key-
image is either a bit plane in the BitplaneCrypt algorithm or an
edge map in the EdgemapCrypt algorithm.

Experiments have demonstrated that both algorithms can
fully encrypt the 2D and 3D images. The original 2D and 3D
images can also be completely reconstructed without any
distortion. Cryptanalysis has shown that the algorithms have
extremely large security key space and can withstand most
common attacks such as the brute force attack, cipher attacks
and plaintext attacks.

Any new or existing image with the same size as the
original image can be used to generate the key-image. All edge
detectors with any specified threshold value can be used to
create the edge map as a key-image for the EdgemapCrypt

algorithm. Any existing image scrambling method can be
applied to these two presented algorithms. All these ensure the
images can be protected with a higher security level.

The presented algorithms are easy to implement in
hardware because they operate at the binary levels. They are
also suitable for multimedia protection in real-time applications
such as wireless networks and mobile phone services.

REFERENCES

[1] K. C. Iyer and A. Subramanya, "Image Encryption by Pixel Property
Separation," http://eprint.iacr.org/2009/043.pdf, Cryptology ePrint
Archive, 2009.

[2] National Institute of Standards and Technology, "Data Encryption
Standard (DES)," http://csrc.nist.gov/publications/fips/fips46-3/fips46-
3.pdf, 1999.

[3] National Institute of Standards and Technology, "Advanced Encryption
Standard (AES)," http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf, 2001.

[4] B. B. Zhu, M. D. Swanson, and S. Li, "Encryption and authentication
for scalable multimedia: current state of the art and challenges," in
Internet Multimedia Management Systems V, Philadelphia, PA, USA,
2004, pp. 157-170.

[5] M. Ashtiyani, P. M. Birgani, and H. M. Hosseini, "Chaos-Based
Medical Image Encryption Using Symmetric Cryptography," in
Information and Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International Conference on,
2008, pp. 1-5.

[6] M. Yang, N. Bourbakis, and S. Li, "Data-image-video encryption,"
Potentials, IEEE, vol. 23, no. 3, pp. 28-34, 2004.

[7] Y. Zhou, S. Agaian, V. M. Joyner, and K. Panetta, "Two Fibonacci P-
code based image scrambling algorithms," in Image Processing:
Algorithms and Systems VI, San Jose, CA, USA, 2008, pp. 681215-12.

[8] J. Zou, R. K. Ward, and D. Qi, "A new digital image scrambling
method based on Fibonacci numbers," in Circuits and Systems, 2004.
ISCAS '04. Proceedings of the 2004 International Symposium on, 2004,
pp. III-965-8 Vol.3.

[9] R.-J. Chen and J.-L. Lai, "Image security system using recursive
cellular automata substitution," Pattern Recognition, vol. 40, no. 5, pp.
1621-1631, 2007.

[10] J. C. Yen and J. I. Guo, "Efficient hierarchical chaotic image encryption
algorithm and its VLSI realisation," Vision, Image and Signal
Processing, IEE Proceedings -, vol. 147, no. 2, pp. 167-175, 2000.

[11] Z. H. Guan, F. J. Huang, and W. J. Guan, "Chaos-based image
encryption algorithm," Physics Letters A, vol. 346, no. 1-3, pp. 153-
157, Oct 2005.

[12] G.-S. Gu and G.-Q. Han, "The Application of Chaos and DWT in
Image Scrambling," in Machine Learning and Cybernetics, 2006
International Conference on, 2006, pp. 3729-3733.

[13] T. Li, S. Zhou, Z. Zeng, and Q. Ou, "A new scrambling method based
on semi-frequency domain and chaotic system," in Neural Networks
and Brain, 2005. ICNN&B '05. International Conference on, 2005, pp.
607-610.

[14] S. Li, C. Li, G. Chen, N. G. Bourbakis, and K.-T. Lo, "A general
quantitative cryptanalysis of permutation-only multimedia ciphers
against plaintext attacks," Signal Processing: Image Communication,
vol. 23, no. 3, pp. 212-223, 2008.

[15] J.-W. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim, "Optical image
encryption based on XOR operations," Optical Engineering, vol. 38, no.
1, pp. 47-54, 1999.

[16] R. Lukac and K. N. Plataniotis, "Bit-level based secret sharing for
image encryption," Pattern Recognition, vol. 38, no. 5, pp. 767-772,
2005.

[17] Y. Zhou, K. Panetta, and S. Agaian, "Partial Multimedia Encryption
with Different Security Levels," in Technologies for Homeland
Security, 2008 IEEE Conference on, 2008, pp. 513-518.

[18] A. J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone Handbook
of Applied Cryptography. New York: CRC Press, Inc., 1997.

4574

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

