
Image Encryption Using Binary Key-images 

Yicong Zhou, Karen Panetta, Fellow, IEEE
Department of Electrical and Computer Engineering 

Tufts University 
Medford, MA 02155, USA 

yzhou0a@ece.tufts.edu, karen@ece.tufts.edu  

Sos Agaian, Senior Member, IEEE
Department of Electrical and Computer Engineering 

University of Texas at San Antonio 
San Antonio, TX 78249, USA 

Sos.Agaian@utsa.edu

Abstract—This paper introduces a new concept for image 
encryption using a binary “key-image”. The key-image is either a 
bit plane or an edge map generated from another image, which 
has the same size as the original image to be encrypted.  In 
addition, we introduce two new lossless image encryption 
algorithms using this key-image technique. The performance of 
these algorithms is discussed against common attacks such as the 
brute force attack, ciphertext attacks and plaintext attacks. The 
analysis and experimental results show that the proposed 
algorithms can fully encrypt all types of images. This makes them 
suitable for securing multimedia applications and shows they 
have the potential to be used to secure communications in a 
variety of wired/wireless scenarios and real-time application such 
as mobile phone services.  

Keywords—image encryption, key-image, bit plane, edge map, 
brute force attack, chipertext attack, plaintext attack

I. INTRODUCTION

Network technologies and media services provide 
ubiquitous conveniences for individuals and organizations to 
collect, share, or distribute images/videos in multimedia 
networks and wireless or mobile public channels. Image 
security is a major challenge in storage and transmission 
applications. For example, video surveillance systems for 
homeland security purposes are used to monitor many strategic 
places such as public transportation, commercial and financial 
centers. Large amounts of videos and images with private 
information are generated, transmitted, or restored every day. 
In addition, medical images with a patient’s records may be 
shared among the doctors in different branches of a health 
service organization over networks for different clinical 
purposes. These images and videos may contain private 
information. Providing security for these images and videos 
becomes an important issue for individuals, business and 
governments as well. Moreover, applications in the automobile, 
medical, construction and fashion industry require designs, 
scanned data, and blue-prints to be protected against espionage.  
Considering the long lifetime of image in the afore-mentioned 
domains, it is imperative to develop and employ techniques 
which protect the content throughout their lifetime [1]. Image 
encryption is an effective approach to protect images or videos 
by transforming them into completely different formats.  

Several interesting approaches for image encryption have 
been developed. One method based on the cryptography 
concept considers images as data blocks or streams. It encrypts 
images block by block or stream by stream using different 

techniques. Data Encryption Standard (DES) [2] and Advanced 
Encryption Standard (AES) [3] are two examples of this 
approach. However, such encryption methods incur large 
computational costs and show poor error resilience [4].  

Image encryption can be accomplished by scrambling 
image pixel positions using different techniques in the spatial 
domain [5-7]. One example is the recursive sequence based 
image scrambling approach. It scrambles images using 
different recursive sequences such as the Fibonacci sequence 
[8], Cellular automata [9] and chaotic maps [10, 11]. Image 
encryption can also be accomplished by scrambling coefficient 
matrices/blocks in the transform domain [12, 13]. Nevertheless, 
these approaches have extremely low security levels due to the 
lack of security keys or the small key space. Furthermore, the 
permutation-only based encryption schemes are known to be 
vulnerable for plaintext attacks [14].  

Another approach for image encryption is to change image 
pixel values based on the combination of image bit plane 
decomposition and logic operations [15, 16]. The security level 
of this method is much lower because the results of its 
decomposition process and logic operations are predictable. It 
is not immune to plaintext attacks. 

To achieve higher levels of security, one solution is to 
change image pixel values while scrambling the positions of 
image pixels or blocks using different techniques. In this paper, 
we introduce two new lossless image encryption algorithms 
using a new concept “key-image” which is a binary image with 
the same size as the original image to be encrypted. One 
algorithm, called the BitplaneCrypt, generates the key-image 
by extracting a binary bit plane from another new or existing 
image. The key image of the other algorithm, called 
EdgemapCrypt, is an edge map obtained from a new or existing 
image using a specific edge detector with a specified threshold. 

The algorithms decompose the original image into its 
binary bit planes. The bit planes are encrypted by performing 
an XOR operation with the key-image one by one. And then 
the order of all the bit planes is inverted. The resulting 
encrypted image can be obtained by applying a scrambling 
algorithm to the image from a combination of all bit planes.  

The rest of this paper is organized as followed. Section II 
introduces the two image encryption algorithms. Experimental 
examples are provided in Section III to show the performance 
of the two algorithms for 2D and 3D image encryption. Section 
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IV addresses the cryptanalysis for the two algorithms. A 
conclusion is reached in Section V.  

II. IMAGE ENCRYPTION ALGORITHMS

In this section, A binary image is introduced as a “key-
image” with the same size as the original image to be 
encrypted. We also introduce two image encryption algorithms 
using this key-image. One is called the BitplaneCrypt 
algorithm, while the other is named as the EdgemapCrypt 
algorithm. Both of them can fully encrypt 2D and 3D images 
such as grayscale images, color images and medical images. 

The underlying foundation of both algorithms is to change 
image pixel values by performing the XOR operation between 
the key-image and each bit plane of the original image. This is 
followed by an image scrambling process which changes the 
locations of image pixels or blocks. 

A. The BitplaneCrypt algorithm 
The BitplaneCrypt algorithm uses a binary bit plane as the 

key-image. This bit plane is extracted from another new or 
existing image which is different from the original image to be 
encrypted.

The BitplaneCrypt algorithm is described in Fig. 1. It first 
generates the key-image by exacting the rth bit plane of the 
selected image, where r is the location of the bit plane. The 
algorithm then decomposes the original image into its binary 
bit planes and performs an XOR operation between each of 
these bit planes and the key-image. Next, the order of bit planes 
is inverted. The algorithm combines the bit planes together. 
Finally, a select scrambling algorithm is applied to the image to 
obtain the final resulting encrypted image.  

Figure 1. The BitplaneCrypt algorithm 

Since the 3D image contains several 2D data matrices 
called 2D components, the 3D image encryption can be 
accomplished by encrypting all its 2D components one by one.  

The users have flexibility to choose any new or existing 
image to generate the key-image. This image can be a public 
image or an image created by the users themselves.  The key-
image can be selected from one of bit planes of this image. Any 
new or existing image scrambling method can be used in the 
BitplaneCrypt algorithm. Therefore, the security keys of the 
algorithm consist of the image or the location of the image used 
to generate the key-image, the location of the bit plane chosen 
as the key-image and the security keys of the scrambling 
method if applicable.   

The correct security keys should be provided to the 
authorized user to generate the key-image.  In the decryption 
process, the user unscrambles the encrypted image using the 
corresponding scrambling algorithm and its security keys.  It 
then decomposes the image into bit planes.  Each bit plane is 
applied an XOR operation with the key-image. The order of bit 
planes is reverted to the original order. The original image can 
be reconstructed by combining all bit planes. 

Similar to the encryption process, the original 3D image can 
be reconstructed by decoding its 2D components one by one.  

B. The EdgemapCrypt algorithm 
The edge map is frequently used in image enhancement, 

compression, segmentation and recognition. The application of 
edge maps can also be extended to image encryption. In this 
section, we introduce a new image encryption algorithm using 
an edge map which is called the EdgemapCrypt algorithm.  

An edge map is considered as the key-image in this 
algorithm. Such edge map is generated from another different 
image with the same size as the original image using a specific 
edge detector with a selected threshold value.   

Bit
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Bit 
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new/existing 
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order of all 
bit planes
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Combine 
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Figure 2. The EdgemapCrypt algorithm 

The EdgemapCrypt algorithm first decomposes the original 
image into its binary bit planes. Each of them is encrypted by 
performing an XOR operation with the key-image, which is an 
edge map created from another image. Next, the algorithm 
inverts the order of all XORed bit planes and combines them 
together. The resulting image is scrambled by using a selected 

Algorithm-1 The BitplaneCrypt Algorithm 

Input The original 2D or 3D image to be encrypted 
Step 1 Choose a new or existing image with the same size of 

the original image, (convert the image into 2D image if 
it is a 3D image.) 

Step 2 Obtain the key-image by extract the rth bit plane of the 
image in Step 1. 

Step 3 Decompose the original image or each component of 
the 3D image into its binary bit planes 

Step 4 Perform the XOR operation between the key-image and 
each bit plane in Step 3. 

Step 5 Invert the order of all bit planes 
Step 6 Combine all bit planes together to obtain the 2D image 

or components 
Step 7 Scramble the resulting image or components in Step 6 

using a selected scrambling method to generate the 
resulting encrypted image. (For the 3D image, scramble 
its 2D components one by one.) 

Output The encrypted 2D or 3D image 
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scrambling algorithm to generate the final resulting encrypted 
image. The EdgemapCrypt algorithm is illustrated in Fig. 2.  

Similar to the BitplaneCrypt algorithm, a 3D image can be 
encrypted by applying the EdgemapCrypt algorithm to all its 
2D components individually.  

Any new or existing image with the same size of the 
original image can be used to generate the edge map, the key-
image. It could be an image in the public online database or a 
new image generate by the users. The edge map can be 
obtained by using any existing edge detector such as Canny, 
Sobel, Prewitt, or any other edge detector. The users have 
flexibility to choose any existing image or any existing edge 
detector or any threshold value to generate the edge map used 
as a key-image. They also have flexibility to use any existing 
image scrambling method for the EdgemapCrypt algorithm. 
Therefore, the security keys for this algorithm consist of the 
image or its location which is used to generate the edge map, 
the type of the edge detector, the edge detector’s threshold, and 
the security keys of the scrambling algorithm. 

To reconstruct the original image, the users should be 
provided the security keys which help them to obtain the 
correct edge map. The decryption process first generates the 
edge map from the selected image using the security keys. It 
then unscrambles the encrypted image using the selected 
scrambling algorithm. Next, it decomposes the unscrambled 
image into its binary bit planes and performs XOR operation 
between the edge map and each bit plane. The order of all bit 
planes is restored to the original order. The reconstructed 2D 
image/component can be obtained by combining all bit planes.  

III. EXPERIMENTAL RESULTS

The BitplaneCrypt and EdgemapCrypt algorithms have 
been successfully implemented in 18 different 2D and 3D 
images such as grayscale images, color images and medical 
images. Several simulation results are provided to show the 
performance of the algorithms for 2D and 3D image 
encryption.

Figure 3. Test images. (a) 256×256 Cameraman; (b) 256×256 Lena; (c) 
256×256 Baby; (d) 256×256 Chessplayer; (e) 512×512 Barbara; (f) 512×512 

Peppers; (g) 512×512 CT ribs image; (h) 512×512 MRI brain image 

In all experimental results of this paper, both algorithms 
utilize the image scrambling algorithm based on the 
Generalized P-Gray Code in [17] with the security keys: 

2, 0n p . Fig. 3 shows several 2D images to be used as test 
images or images to generate the key-image. 

A. 2D Image Encryption 
There are several types of 2D images such as grayscale 

images, medical images and biometrics. The 2D image can be 
decomposed into several binary bit planes and encrypted one 
by one.  

Figure 4. Grayscale image encryption using the BitplaneCrypt algorithm.   
(a) The original 512×512 grayscale image; (b) A 512×512 Peppers image;    

(c) The encrypted image; (d) The reconstructed image; (e) Histogram of the 
original image in (a); (f) The 5th bit plane of the Peppers image in (b);                   

(g) Histogram of the encrypted image in (c); (h) Histogram of the difference 
between (d) and (a). 

Figure 5. Grayscale image encryption using the EdgemapCrypt algorithm. 
(a) The original 256×256 grayscale image; (b) A 256×256 Cameraman image; 

(c) The encrypted image; (d) The reconstructed image; (e) Histogram of the 
original image in (a); (f) The edge map of the Cameraman  image in (b), 

Sobel, 0.3;   (g) Histogram of the encrypted image in (c); (h) Histogram of the 
difference between (d) and (a). 

Fig. 4 shows an example of grayscale image encryption 
using the BitplaneCrypt algorithm. The key-image in this 
example is the 5th bit plane of a 512×512 grayscale Peppers 
image. Fig. 5 shows a result of grayscale image encryption 
using the EdgemapCrypt algorithm. The key-image is obtained 
from a 256×256 grayscale Cameraman image using the Sobel 
edge detector with a threshold 0.3.  

From these results, the original images are fully encrypted 
as shown in Fig. 4(c) and Fig. 5(c). The distributions of the 
pixel values of the encrypted images are almost equal in 
grayscale value range as shown in Fig. 4 (g) and Fig. 5(g).  
This is one advantage of the presented algorithms. The original 
images are completely reconstructed. These can be verified by 
the reconstructed images in Fig. 4(d) and Fig. 5(d) and their 
histogram of the difference between the original image and the 
reconstructed image in Fig. 4(h) and Fig. 5(h). 

The medical image encryption examples using the 
BitplaneCrypt and EdgemapCrypt algorithms are shown in Fig. 
6 and Fig. 7, respectively. The key-image of the BitplaneCrypt 
algorithm in Fig. 6 is the 7th bit plane of a 512×512 grayscale 
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Barbara image. The key-image of the EdgemapCrypt algorithm 
in Fig. 7 is generated from a 512×512 grayscale Peppers image 
using a Prewitt edge detector with a threshold 0.2. The original 
medical images are also fully encrypted and completely 
reconstructed. This full encryption can be demonstrated by the 
encrypted image in Fig. 6(c) and Fig. 7 (c) and their histograms 
in Fig. 6(g) and Fig. 7(g), individually. The perfect 
reconstruction can be verified by the reconstructed images in 
Fig. 6(d) and Fig. 7(d) and their histograms in Fig. 6(h) and 
Fig. 7(h), respectively. All these results prove that the 
presented algorithms are lossless encryption methods. 

Figure 6. Medical image encryption using the BitplaneCrypt algorithm.      
(a) The original 512×512 CT ribs image; (b) A 512×512 Barbara image;       

(c) The encrypted image; (d) The reconstructed image; (e) Histogram of the 
original image in (a); (f) The 7th bit plane of the Barbara image in (b);                   

(g) Histogram of the encrypted image in (c); (h) Histogram of the 
reconstructed image in (d). 

Figure 7. Medical image encryption using the EdgemapCrypt algorithm.    
(a) The original 512×512 MRI brain image; (b) A 512×512 Peppers image;  
(c) The encrypted image; (d) The reconstructed image; (e) Histogram of the 
original image in (a); (f) The edge map of the  Peppers image in (b), Prewitt, 

0.2;   (g) Histogram of the encrypted image in (c); (h) Histogram of the  
reconstructed image in (d). 

B. 3D Image Encryption 
The 3D images, such as color images and 3D medical images 
contain several 2D components. Each component can be 
considered as a 2D image. The 3D image encryption using the 
presented algorithms can be accomplished by encrypting all 
the 2D components one by one. 

Fig. 8 and Fig. 9 show the examples of color image 
encryption using the BitplaneCrypt and EdgemapCrypt 
algorithms, separately. The key-image in Fig. 8 uses the 4th bit 
plane of a 512×512 grayscale Chessplayer image. The key 
image in Fig. 9 is an edge map generated from a 512×512 
grayscale Barbara image using Canny edge detector with 
threshold 0.1. 

The results show that the color images are fully encrypted 
and then completely reconstructed. The histograms in Fig. 8(g) 
and Fig. 9(g) also verified the distributions of the encryption 
images are equal in the data level range. The reconstructed 
images in Fig. 8(d) and Fig. 9(d) and their histograms in Fig. 
8(h) and Fig. 9(h) demonstrate the complete reconstruction of 
the original images. These further prove that the BitplaneCrypt 
and EdgemapCrypt algorithms are lossless encryption methods. 

Figure 8. Color image encryption using the BitplaneCrypt algorithm.          
(a) The original 256×256 color image; (b) A 256×256 grayscale Chessplayer 

image; (c) The encrypted color image; (d) The reconstructed color image;    
(e) Histogram of the original image in (a); (f) The 4th bit plane of the 

Chessplayer image in (b); (g) Histogram of the encrypted image in (c);             
(h) Histogram of the difference between (d) and (a). 

Figure 9. Color image encryption using the EdgemapCrypt algorithm.        
(a) The original 512×512 color image; (b) A 512×512 grayscale Barbara 
image; (c) The encrypted color image; (d) The reconstructed color image;    

(e) Histogram of the original image in (a); (f) The edge map of the  Barbara 
image in (b), Canny, 0.1; (g) Histogram of the encrypted image in (c);          

(h) Histogram of the recontructed image in (d). 

IV. SECURITY ANALYSIS

Security is important for both the encrypted objects and the 
encryption algorithms. We discuss some security issues of the 
BitplaneCrypt and EdgemapCrypt algorithms from the 
cryptography point of view in this section. 

A. Security Key Space 
As the discussion in Section II, the security keys of the 

BitplaneCrypt algorithm are the combination of the image or 
the location of the image used to generate the key-image, the 
location of the bit plane used as the key-image, the security 
keys of the scrambling algorithm. On the other hand, the 
security keys of the EdgemapCrypt algorithm consist of the 
image or its location which is used to generate the edge map, 
the type of the edge detector, the edge detector’s threshold, and 
the security keys of the scrambling algorithm. 
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The combination of the security keys is extremely 
important for both presented algorithms. The original image 
can be completely reconstructed without any distortion only 
when the correct security keys are being utilized. This can be 
verified by the reconstructed images in Fig. 10(b) and Fig. 
11(b) and their histograms in Fig. 10 (f) and Fig. 11(f). 
Otherwise, the reconstructed images cannot be recognized as 
shown in Fig. 10 (c), (d) and Fig. 11 (c), (d).  

Figure 10. Grayscale image decryption using the BitplaneCrypt algorithm 
with different security keys. (a) The encrypted 256×256 grayscale Chessplayer 

image with security keys: the 4th bit plane of the 256×256 grayscale Lena 
image and 2, 0n p for the scrambling algorithm; (b) The reconstructed 

grayscale image using the correct secruity keys; (c) The reconstructed 
grayscale image using the same key-image and 2, 2n p for the scrambling 
algorithm; (d) The reconstructed grayscale image using the 7th bit plane of the 
256×256 grayscale Lena image and the same security keys for the scrambling 
algorithm; (e) the key-image: the 4th bit plane of the 256×256 grayscale Lena 

image; (f) Histogram of the difference between the original image and the 
reconstructed image in (b); (g) Histogram of the difference between the 
original image and the reconstructed image in (c);  (h) Histogram of the 

difference between the original image and the reconstructed image in (d). 

Figure 11. Grayscale image decryption using the EdgemapCrypt algorithm 
with different security keys. (a) The encrypted 256×256 grayscale Baby image 

with security keys: the 256×256 grayscale Chessplayer image, Prewitt, 0.5, 
and 2, 0n p for the scrambling algorithm;  (b) The reconstructed 
grayscale image using the correct secruity keys; (c) The reconstructed 

grayscale image using the same key-image and 2, 1n p for the scrambling 
algorithm; (d) The reconstructed grayscale image using the security keys: the 

256×256 grayscale Cameramean image, Sobel, 0.3, and the same security keys 
for the scrambling algorithm; (e) the key-image: the edge map of  the 256×256 

grayscale Chessplayer image, Prewitt, 0.5; (f) Histogram of the difference 
between the original image and the reconstructed image in (b); (g) Histogram 
of the difference between the original image and the reconstructed image in 

(c);  (h) Histogram of the difference between the original image and the 
reconstructed image in (d). 

Any new or existing image with the same size as the 
original image can be used to generate the key-image for both 
algorithms. It has a huge numbers of possible choices, 
assuming IP . Each of its bit planes can be used as a key-image

for the BitplaneCrypt algorithm. The number of possible 
choices of the key-image for this algorithm is 8 IP for its gray 
levels within 0-255. In addition, any new or existing image 
scrambling algorithm can be used to scramble the bit planes in 
both algorithms. The security keys of the selected image 
scrambling algorithm are also part of combinations of the 
security keys for the presented algorithms, assuming their 
possible choices are SP which is not more than ! !M N if the 
original image is an M N grayscale image. Thus, the security 
key space of the BitplaneCrypt algorithm for an M N
grayscale image with is 8 I SP P .

Moreover, any new or existing edge detector can be used in 
the EdgemapCrypt algorithm, assuming its possible choice 
is EP . The edge detector’s threshold is rational number within 0 
to 1. However, not all the threshold values can achieve a 
desirable encryption result. The number of their possible 
choices may not be infinite, assuming THP . The security key 
space for the EdgemapCrypt algorithm is I E TH SP P P P .

B. Brute Force Attack 
The Brute force attack is an attack model in which the 

attacker tries to guess the security keys by conducting an 
exhaustive search of all the possible combinations of security 
keys of the encryption algorithms. Theoretically, this approach 
is feasible if the key space of the encryption algorithm is 
limited and the attacker knows the encryption algorithm.  

Even if the security key spaces of both algorithms are not 
infinite, they are still sufficiently large since the large number 
of possible new/existing images can be used to generate the 
key-image. As a result, the two algorithms can withstand the 
brute force attack. 

C. Ciphertext-only Attack 
In cryptography, the plaintext is the original information to 

be encrypted. The ciphertext is the encrypted plaintext. 

The ciphertext-only attack is an attack model in which an 
attacker tries to deduce the security keys by only studying the 
ciphertext [18]. This attack can be used to recover the original 
image data by studying the encrypted images. If fewer portions 
of the images are encrypted, more portions of the original 
images can be recovered by an attacker without knowing the 
encryption algorithm and its security keys. An encryption 
scheme has an extremely low security level if it cannot 
withstand this attack.  

From the experimental results in Section III, the encrypted 
images are visually unrecognizable and totally different from 
the original images. They contain almost no visual information 
of the original images. The distributions of the encrypted 
images are equal in their histograms. These ensure the 
BitplaneCrypt and EdgemapCrypt algorithms can withstand the 
cipher-only attack.  

D. Known-Plaintext Attack 
The known-plaintext attack is an attack model in which an 

attacker tries to obtain the security keys of encryption 
algorithm by studying a number of plaintexts and the 
corresponding ciphertexts [18]. The condition of this attack is 

4573



that the attacker should have some plaintexts and the 
corresponding ciphertext. It is possible for the attacker to 
partially or completely break the encrypted image without 
knowing the encryption algorithm and its security keys if the 
encryption process does not change the image data.  

The XOR operation and inverting the order of the bit planes 
in the BitplaneCrypt and EdgemapCrypt algorithms are 
designed to change image data. The image scrambling 
algorithm is used to change image pixel positions. These make 
the encrypted image data are not useful for the attacker using 
this type of attack. Thus, both algorithms can withstand the 
known-plaintext attack.  

E. Chosen-Ciphertext Attack 
The chosen-ciphertext attack is an attack model in which 

the attacker can choose some ciphertexts and their 
corresponding plaintexts [18]. Therefore, the attacker can 
deduce the security keys in encryption algorithms, or recover 
the original plaintext from the unseen ciphertext. The attack 
could also be accomplished without knowing the encryption 
algorithm and its security keys if the image data does not 
change during the encryption process.  

From the analysis above, the presented algorithms can also 
withstand the chosen-ciphertext attack because both image data 
and pixel locations are changed during the encryption process.  

F. Chosen-Plaintext Attack 
The chosen-plaintext attack is an attack model in which the 

attacker can choose a number of plaintexts and then deduce 
their corresponding ciphertexts [18]. As a result, the attacker 
can choose any useful information as plaintext in order to 
deduce the security keys of encryption algorithms, or 
reconstruct the original plaintexts from the unknown 
ciphertexts. The attack can break the encrypted image without 
knowing the encryption algorithm and its security keys, if the 
image data does not change during the encryption process. 

Both the BitplaneCrypt and EdgemapCrypt algorithms 
change the image data and pixel locations. They can withstand 
the chosen-plaintext attack. 

V. CONCLUSION

In this paper, we have introduced a new concept for image 
encryption using a binary key-image. We also introduced two 
image encryption algorithms based on this key-image. The key-
image is either a bit plane in the BitplaneCrypt algorithm or an 
edge map in the EdgemapCrypt algorithm. 

Experiments have demonstrated that both algorithms can 
fully encrypt the 2D and 3D images. The original 2D and 3D 
images can also be completely reconstructed without any 
distortion. Cryptanalysis has shown that the algorithms have 
extremely large security key space and can withstand most 
common attacks such as the brute force attack, cipher attacks 
and plaintext attacks. 

Any new or existing image with the same size as the 
original image can be used to generate the key-image. All edge 
detectors with any specified threshold value can be used to 
create the edge map as a key-image for the EdgemapCrypt 

algorithm. Any existing image scrambling method can be 
applied to these two presented algorithms. All these ensure the 
images can be protected with a higher security level.   

The presented algorithms are easy to implement in 
hardware because they operate at the binary levels. They are 
also suitable for multimedia protection in real-time applications 
such as wireless networks and mobile phone services. 
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